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ABSTRACT 

It is well known that magnetic fields may be represented by the 
cross product of the gradients of two scalars a and p (l'Euler Poten- 
tials") and that such a representation has considerable use in the de- 
scription of field lines and guiding center motion. Due to practical 
difficulties, however, such potentials are known only for relatively simple 
configurations, including the field of a magnetic dipole. A perturbation 
scheme is developed here by which, given the spherical harmonic ex- 
pansion of the geomagnetic scaiar poieniid iziid trezitltiri it as repreeerrt- 
ing a perturbed dipole field, Euler potentials can be derived to any de- 
sired order of accuracy. Its first-order solutions involve trigonometric 
integrals Vz (e) and tz ( 0 )  previously defined by Pennington, which 
may be expressed in closed form; tables of coefficieEts enabling one to 
obtain these integrals up to n = 6 a re  included. The results a re  tested 
for the internally generated geomagnetic field by mapping lines of 
constant a and ,8 on the earth's surface; conjugate points (which have 
the same a and p)  are  obtained with typical accuracy of 1-2 degrees. 
The method is also applied to a magnetospheric model in which external 
sources are added to represent the effect of the solar wind; although 
this model clearly breaks down at large distances, it gives fairly good 
results within about 10 earth radii, including a ''magnetopause'' onwhich 
two neutral points are located. 
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GEOMAGNETIC EULER POTENTIALS 

THE SCALAR GEOMAGNETIC POTENTIAL 

Magnetic fields may be represented by several methods. The most prevalent 
one, and the one most directly connected with the field's sources, is by means of 
a vector potential A. In source-free regions, however, the field may be more 
simply represented as the gradient of a scalar potential, and this is the way in 
which the geomagnetic field is customarily described. We shall denote here the 
geomagnetic scalar potential by Y ,  assuming it to be given by a spherical har- 
monic expansion in spherical coordinates r , 0 and q5 with origin at the earth's 
center (a is the earth's radius): 

Of the various terms in the expansion of y , the dipole part, corresponding 
to n = 1, is the dominant one. It will be assumed that the polar axis of the co- 
ordinate system has been mitably rdated (giving "tilted dipole" coordinates) so 
that this  part is expressed by g:  alone, while g :  and h: a r e  both zero (Stern, 
1965, Table 1). In this work we investigate quantities which are easily derived 
for the dipole case, but not for arbitrary magnetic fields: it is then useful to re- 
gard the field as that of a perturbed dipole, and carry out a perturbation calcu- 
lation to various orders. 

In any perturbation calculation it is necessary to introduce a "small param- 
eter" E , providing an estimate of accuracy and helping one to decide, at any 
stage, which te rms  to keep and which to neglect. Since gi exceeds the next 
largest coefficient in the expansion (namely, g: ) by a factor of about 10, the ratio 
between these two te rms  may be chosen as E .  In the perturbation calculation 
one then splits up y into sections of different order 
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where yo is the dipolar part 

and where y, contains coefficients ranging between E g i  and E* gy , y, contains 
those between E* g i  and e 3  gi,  and so forth. The perturbation is by no means 
"very small" (as is often the case in perturbation problems), for E is of the 
order of 0.1 and there exist 9 coefficients in the range between E gi  and E g y / 3 .  

EULER POTENTIALS 

The preceding representation suffers from the drawback that it does not 
afford an easy description of magnetic field lines. A representation which allows 
such a description, originally devised by Euler to describe the velocity field of 
incompressible fluids (Euler, 1769,§ 26, 949; Truesdell, 1954, 9 13) , utilizes two 
scalar functions which are conserved along field lines and has the form 

In what follows, such functions will be termed Euler Potentials. They are 
not uniquely defined but may be replaced by any pair ~ ( a ,  p) and v (a ,  p) , pro- 
vided 

For further properties of these potentials, including considerations of their 
single-valuedness and superposition, the reader is referred to more detailed 
work (Stern, 1966). 

Both a and ,B are independent solutions of the linear partial differential 
equation (here written for a ) 
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On the other hand, an arbitrary independent pair of functions u and v solving 
this equation does not necessarily satisfy (5). Since the general solution of (7) 
is an arbitrary function of two independent solutions, functional relations then 
exist of the form 

a = a (u, v )  

and substitution into (5) gives 

B =  a ( a ,  p) (Vu x V V )  = x (u, v )  (Vu x Vv) a (u, v )  

which, unless (6) happens to hold, is not of the same form. The solutions u and 
v are conserved on field lines and may still be used to label them, but their cross  
product no longer gives the field's magnitude correctly. Any solution of (7) will 
be called here an Euler potential (the justification of this is given in the next 
paragraph) while'a pair of such solutions which also satisfies (5) will be termed 
a matched pair of potentials. 

Given two nonmatching potentials [ u ,  V I ,  it is always possible (at least in 
principle) to derive from them a matching pair [u, 8 (u , v )I (e.g. Phillips, 1933, 
949). Demanding 

one obtains 

where denominator and enumerator are parallel vectors and therefore have a 
well defined scalar ratio. Consider now the family of surfaces u = constant. On 
each such surface points may be labelled by v and by some other coordinate, 
e.g. y or,more generally, the a rc  length s measured along a field line. Inte- 
grating on such surfaces along lines of constant y (or s ) , from some reference 
point v = vR, one obtains (compare Ray, 1963) 

6 = I", dv '  t S'(u) 
u x Vv' 

R 

(9) 
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Euler potentials have been extensively used in the theory of the motion of charged 
particles trapped by the geomagnetic field. However, there exists no analytic 
representation for them equivalent to equation (2) giving y .  The reason for this 
omission is probably the lack of any easy method by which such functions may 
be derived, and it is the purpose of this work to explore means by which this 
situation may be improved, for the case of the geomagnetic field. 

EXPANSION O F  THE POTENTIALS 

Because the dipole component of the field possesses axial symmetry, it is 
possible to derive its Euler potentials, namely 

a. = ag: (:)sin2 6 

This suggests that the Euler potentials corresponding to the perturbed dipole 
field can be expanded 

a = a  + a  + a  + - - -  0 1 2  

P = P o  + P l  + P 2  -t - * .  

Substituting these together with the expansion (3) into equation (5) and equating 
individual orders gives 

and so forth. Because y, represents the limit of accuracy to which the geo- 
magnetic field is determined, there actually exists no practical need for approxi- 
mations of order higher than the second. Each of the above vector equations is 
equivalent to a set of three scalar equations, obtained by forming its scalar 
product with 3 independent vector fields. Let two of these be V a o  and vpo;  the 
equations then obtained are 

( V a l  * V y , )  t ( V a ,  * 07,) = 0 
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and 

Vu2 Vy, t V a l  - Dy, t Vuo  * Vy, = 0 (17) 

These (and corresponding equations of higher orders) are the same a s  would have 
been obtained from an expansion of (7) to its various orders, and therefore, the 
expanded solutions (12) obtained by considering them alone yield Euler potentials 
which are not necessaril) matched. Nevertheless, because the equations in this 
form are  linear and involve a 'and P separately, we shall start by solving them, 
leaving the problem of matching to be considered later. 

It is evident that the functions a,  , p, , a, and P, derived by equations (15) 
to (18) a r e  not unique, for these equations still hold if an arbitrary function of 
a and Po is added to any of them. This suggests that we choose a new set of 
independent variables which includes a. and Po. For convenience, we will use 
4 rather than Po and retain 6 as the third independent coordinate, even though 
one may more generally consider yo or  the a r c  length so along a dipole field 
line for this role. One thus writes 

0 

In these variables, 

so that 

where the partial derivative of yo , it should be noted, is evaluated with r held 
constant. 

Let Z( L) indicate summation over those terms included in y,. Substitution 
in the equation (15) yields 
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Before this can be integrated, the right hand side has to be expressed in terms 
of a,, , 0 and 4. Using 

one gets 

and hence 

e 5 } k :  dY 
(25) 

os m @ + hr s in  m 4: 

V: (8) {g: cosmd + h: s in  m 4 }  t 6 (aO7 4)  
( 1 )  

where the function 

(n + 1) s i n @  P: (0) t 2 c o s  0 
dO v; ( e )  = 

is a trigonometric integral which may be evaluated in closed form. This result 
is equivalent to  one previously derived by Pennington (1966) and tables giving 
V z  (0) a re  available (Pennington, 1961; Stern, 1965). It also has been derived, 
in a different way, by Birmingham and Northrop (private communication). The 
lower limit of integration has been arbitrarily chosen as n/2 (dipole equator); 
a different choice merely leads to a different additive function e. 

In a similar  manner, the equation for ,8, gives 

with 
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This, too, is equivalent to one of Pennington's results. For the explicit form of 
t: ( O ) ,  see Tables 1 and 2. 

Table 1 
Coefficients of the Trigonometric Integrals tt ( e )  for odd - m 

n m 

n+m odd 

n+m even 

1 

2 

3 

3 

4 

4 

5 

5 

5 

6 

6 

6 

1 

1 

1 

3 

1 

3 

1 

3 

5 

1 

3 

5 

I I I 1 1 

Multiply Above Factors by cos 

-1. 

.73485 

-1.58114 

-.79919 

1.79284 

-1 37083 

-.57735 

.36742 

-.79057 

-.39959 

.89642 

-.93541 

-.48990 

1.10680 

1.25499 

-.29970 

.67231 

-.70156 

-.45175 

1.44468 

-1.79284 

-2.70044 

4.26977 

- 1.66201 

-.43033 

2.29128 

m2.41522 

-.41660 

1 

- 

.57735 

-.65504 

1.25499 

.82576 

-1.85455 

1.66201 

To derive the second order t e rm a 2 ,  it is best to split it into two parts 

a2 (ao,+,  e )  = a; t a; 
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Table 2 
Coefficients of the Trigonometric Integrals t: ( e )  for even m 

n m 

i+m odd 

i+m even 

2 2 

3 2 

4 2 

4 4 

5 2 

5 4 

6 2 

6 4 

6 6 

Multiply Above Factors by cos 

-.a6603 

-.96825 

.a3853 .55902 -1.11803 

-1.10926 -.73951 

2.56174 -1.28087 

-1.47902 

-1.01892 -.67928 -.54343 3.80398 -1.44913 

1.39522 .93015 .74412 -2.48039 

-1.25942 -.a3961 -.67169 

1 

log tan (0 /2) 

.a6603 

.96825 

-.83853 

1.10926 

-1.28087 

1.47902 

1.01892 

-1.39522 

1.25942 

When added together, the above equations yield the equation (17); similar 
expressions may be derived for 0,. 

The equation for a; resembles that for al and presents no difficulty; in- 
deed, one can easily include the calculation of this part with the calculation of 
a The equation for  a; , on the other hand, requires considerable effort: both 
a 
therefore the right-hand side of (31) - and consequently ui - contains one term 
for  each binary combination of these coefficients. The result can still be inte- 
grated in closed form, but it is rather lengthy and will not be further discussed 
here. 

1' 
and y1 are linear in the set of coefficients (g: , hf ) summed by C ~ ~ and 

1 

THE MATCHING OF SOLUTIONS 

The corrections ai and pi added to the zero order Euler potentials a r e  all 
derived by integration within an arbitrary function of uo and ,Bo. The question 
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arises whether the freedom afforded by such a function is sufficient to enable 
one to make the solutions match, within the order to which they are derived. 
I t  will be shown in what follows - with no attempt at mathematical rigor, how- 
ever - that this indeed is the case. 

Let a subscript such as n characterize quantities of the n-th order, while a 
superscript ( n )  will refer to a variable o r  product of variables evaluated to the 
n-th order, i.e. to its perturbation expansion summed up to and including the 
n-th order term. Suppose that matching Euler potentials a(" ) and 13'" ) of the 
n-th order have been derived by perturbing z0 and Po , i.e. 

Starting with a ( " )  and p( " )  one may then proceed and derive higher orders, and 
we assume that the procedure converges, tending to certain limits a and ,~3 

In general a and p, o r  their approximations to  an order higher than the n-th, do 
not match. However, it will be shown that a suitable hnotiuii kn+l  (aOI ,$o) ca:: 
be found which, when added to Rn+l , causes the (n + 1) order alsproximation to 
match as well (alternatively, such a function may be derived for a,+l ). The proc- 
ess may then be repeated, allowing matching to  any desired order. 

It has been shown in  equation (9) that if a and /3 are nonmatching Euler po- 
tentials, a function 6 ( a ,  p)  matching a does exist, i.e. 

H e r e  we are not as much concerned with 6 as with its derivative 

a vap = A ( a ,  P )  

We assume that like a and p, the function A (a, p )  - and therefore also 6 - 
can be expanded to various orders 
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and so can, therefore, equation (33). Now equation (32) expresses the given fact 
that up to order n , the expansions of a and P match. When this equation is 
compared to (33), we see that at least to order n , h ( a ,  P )  equals unity 

and hence 

where hn+,(a,p ) is some function of order (n + 1). Integration gives, apart from 
an irrelevant function of a alone 

Now comes the important step: if one substitutes ( ao, Po ) for (a  , P ) in a term of 
order (n + l), the e r ro r  introduced is only of order (n + 2). In particular 

This is exactly the desired result, for its states that a solution 8(n+1)  matching 
a to the (n + 1) order may be obtained by adding to the nonmatching solution 
P("+l) a function kn+l ( a o ,  Po ) of a. and Po . 

MATCHING FIRST ORDER SOLUTIONS 

As has been shown in the preceding section, the first order Euler potentials 
may be matched by a proper choice of the functions 
appearing in equations (26) and (28). It is sufficient for this purpose to consider 
only solutions of the type 

(ao , Po ) and 77 (ao , Po ) 

where and 77;  are constants remaining to be determined. 
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The third of the scalar equations equivalent to (13) may he derived by scalar 
multiplication with the  unit vector ^e.  This gives 

r sin 6 a r  

or 

Expanding, and reconverting the first term to  ( x o ,  r i ,  4) variables, yields 

By malting use of Legendre's associated equation it may be shown that 

and therefore F;(B) is a constant. It only remains to choose the adjustable part 
of F: 

n r :  - m rl: 

so that this constant vanishes. For instance, we may choose 

q: = 0 
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Table 3 lists the constant parts of [V: (0) + E : ]  for n 5 6 ,  with V: (8) de- 
satisfying (35). These values should replace the constant fined as in (27) and 

parts listed by Stern (1965; Tables 2 and 3) if one wishes to calculate matching 
potentials in the manner described here. 

n =  

1 

2 

3 

Table 3 
Integration Constants Added to 

\ 

1.0 0 

.28867 

0 0 

0 -.16377 

0 0 

0 .13761 

2 3 

0 

.64550 0 

0 .94124 

-.51235 0 

0 -.92727 

4 5 6 

0 

1.18322 0 

0 1.38500 0 

The above are the 8-independent portions of V," ( O ) ,  selected so that V," (7r/2) = 
(- l / n )  [ d P," (n/2)/d 01 

CONJUGATE POINTS 

In geomagnetic nomenclature, two points (usually chosen on the earth's sur- 
face) are  termed conjugate to each other if they are connected by a magnetic field 
line. The identification of such pairs of points is of considerable interest, be- 
cause observations made at them of effects propagating dong magnetic field 
lines - e.g. hydromagnetic waves - tend to be correlated (Wescott, 1966). A 
large number of such pairs has been tabulated (Roederer et al., 1966) by numer- 
ically tracing field lines of the geomagnetic field. 

The accuracy of first-order Euler potentials may be tested by deriving a 
map of a and ,B on the earth's surface (Figure 1). On such a map, pairs of con- 
jugate points should be identified by the same a and P , and the extent to which 
they fail to do so gauges the accuracy of the approximation. 
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In Table 4 the conjugates to a number of points on the earth's surface are 
derived using first order Euler potentials (and assuming a spherical earth), and 
they are compared with those derived numerically by Roederer et.al. (1966). A 
deviation averaging about one degree in latitude and a little more than that in 
longitude is evident: it can probably be attributed to the omission of higher- 
order terms. 

Adelaide 

Anchorage 

Antofagasta 

A r  change1 sk 

Athens 

Baghdad 

Bangkok 

Belem 

Bismark 

Bogota 

Bombay 

Capetown 

Deep River 

Haifa 

Johannesburg 

Kyoto 

Kiruna 

Kodaikanal 

London 

Midway 

Por t  Moresby 

Seattle 

Torino 

Trinidad 

Washington, D.C. 

Table 4 
Comparison of Conjugate Points 

,atitude 

-34.95 

61.17 

-23.65 

64.58 

37.97 

33.35 

13.75 

-1.00 

46.82 

4.63 

19.00 

-34.15 

46.10 

32.83 

-26.20 

35.02 

67.83 

10.23 

51.53 

6.97 

-9.20 

47.75 

45.20 

10.60 

38.73 

,ongitude 

138.53 

-149.98 

-70.42 

40.5 

23.72 

44.38 

100.55 

-49.00 

-100.77 

-74.08 

72.83 

18.32 

-77.5 

35.1 

28.03 

135.78 

20.43 

77.48 

0.10 

158.22 

147.15 

- 122.42 

7.65 

-61.2 

-77.13 

This  Work 

Conjugate 
Latitude 

52.98 

-53.46 

-4.55 

-52.00 

-21.25 

-16.53 

5.21 

-18.24 

-63.18 

-32.00 

-0.94 

44.52 

-72.61 

-15.15 

41.38 

-18.18 

-58.85 

8.41 

-46.27 

5.84 

24.61 

-54.18 

-33.67 

-38.54 

-66.03 

Conjugate 
Longitude 

145.73 

172.63 

-68.80 

72.07 

31.00 

48.21 

101.46 

-43.67 

133.44 

-76.11 

74.73 

2.83 

-97.61 

38.85 

19.71 

135.30 

66.17 

78.55 

26.14 

159.10 

150.36 

-153.73 

23.87 

-55.57 

-90.70 

Roederer et.al. 

>on jugate 
Latitude 

53.2 

-53.6 

-3.1 

-51.7 

-19.7 

-16.4 

5.4 

-17.2 

-62.6 

-30.5 

-1.2 

45.0 

-72.5 

-14.3 

42.5 

-18.4 

-58.7 

8.5 

-44.3 

6.6 

24.9 

-53.7 

-32.0 

-37.8 

-65.7 

Conjugate 
Longitude 

143.3 

172.2 

-69.7 

69.1 

29.3 

46.4 

100.4 

-44.6 

-135.3 

-77.2 

74.3 

-0.6 

-98.0 

37.0 

18.3 

134.7 

63.6 

77.6 

25.8 

158.2 

149.1 

-155.2 

23.3 

-56.3 

-91.8 
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EXTERNAL SOURCES 

The approximate derivation of Euler potentials by the method outlined here, 
performed in geomagnetic tilted-dipole coordinates (Stern, 1965, Table l), im- 
proves with increasing distance from the earth, because the field's nondipole 
components fall off faster than the dipole part. However, at distances larger 
than about 3a an additional factor begins perturbing the field, namely the com- 
pression and sweeping of the geomagnetic field by action of the solar wind. It 
is a matter of controversy whether an appreciable current density ("ring current") 
exists in this region; here such currents will be neglected and the external in- 
fluence will be taken into account by adding radially increasing terms to the 
scalar potential expansion 

n=l m=O 

Following Mead (1964), a fair approximation to the external perturbation is ob- 
tained by retaining the terms involving Eo and 
out to be of the order 
can be regarded as a perturbed dipde GAY- up to somc (cot tzo ..vel defirred) 
limiting distance, of the order of loa. While the present perturbation method 
will diverge outside this limit, one may use it for the region inside, leading to  
a first order contribution to a 

along; these coefficients turn 
g: and 10- 4 g '0 respectively. Obviously the field 

where 
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In both cases, the results resemble previously derived ones, with -(n + 1) replac- 
ing n . A s  before, the constants :: and?: may be chosen so that the potentials 
match. Starting with equation (34), one finds 

- 

I where 

It may again be shown, by means of Legendre's associated equation, that F: ( e )  
is a constant, If?: and?; a r e  chosen s o  as to satisfy 

dPt  

d B  
(n + 1):; t rnTm - - - (7T/2) 

the value of this constant is zero and the matching condition is satisfied. Unlike 
in the case of internal sources, however, additional factors may have to be taken 
into account here when choosing the adjustable constants. 

The reason is that the expansions of a and li? derived here are valid only 
if  Z1 andp, turn out to be relatively small compared to a. and Po. Because 
of the presence of a. in the denominators of (37) and (38), this condition will 
not be met, in general, near the poles (9 = O p ) ,  at which a. vanishes. To re- 
duce and possibly remove this source of trouble, it is advantageous to choose 
5;  in such a way (if possible) that [vz + 
tion (39) it follows that [F; +?j: then also tends to zero, so that such a choice 

1 vanishes at the poles. From Equa- 

also reduces the corresponding divergence in P I .  

For m = 0, equation (39) shows that this condition is always satisfied. In 
other cases,  6; may be chosen so that the condition holds at one of the poles, 
e.g. the northern one. Whether it then holds for the southern pole as well de- 
pends - on the parity of v : ( B )  with respect to the equator. If (n + m) is odd, 
V: (6) and T: ( e )  have both even parity (with appropriate added constant) 

- 

- v: ( e )  = v: (77 - 8 )  

and hence the condition will hold for both poles. In other cases, the parity (with 
suitable additive constants) is odd and v: ( e )  assumes different values at opposite 
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poles (unless it vanishes there). The condition then cannot be met simultaneously 
for both poles: fortufiately, this does not occur in the simple model which will 
now be considered, for which only E; and E: are taken into account and all 
parities a re  even. In that case 

P; = c o s  t? P: = &sin 8 cos  8 

Let = / g y .  The approximate solution i s  then 
(4 1) 

a,/agy = {ia/r) - ‘1 G; (r/a)2 sin2 8 + 2 &G: (r/a)3 {(sin 0/7) - (sin3 8/31 1 c o s  4 
2 

Let A = loa. Following iviead ji.9643 we cliooae 

- - gy = -0.2511 G; = 0.8 - 1 0 - ~  

- - g :  = 0.1242 * C: = 0.3954 

giving 

u/ag; =0.1{(A/r)-0.4(r/A)2} sin2Bt0.1(r/A)3(0.1957 s i n 6 - 0 . 4 5 6 6 s i n 3 B ) c o s 4  
(43) 

,8/a = 4 - 0.09784 (r/A)4 sin-’B s in  4 (44) 

A plot of a/a gy in the 4 = 0,n plane (corresponding to the noon-midnight 
meridional plane) is given in Figure 2, while Figure 3 gives P/a in the equatorial 
plane. 
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4 

Figure 2-Lines of constant a (which also are f ield l ines) in the noon-midnight meridian of the 
first-order magnetospheric model. Values given areof h = age / a ,  which in a dipole f ield equals 
the equatorial crossing distance, in earth radii,  of the corresponding f ield line. 

It is evident from these figures that up to a distance of about 10a this model 
quite closely approximates our ideas of the magnetosphere's configuration. It 
is therefore not particularly useful to regard it any more, at this stage, as an 
approximation of the 3-parameter scalar potential model from which it was 
derived (and from which it deviates considerably near r = loa) because that model, 
in its turn, is no more than a simplified representation of the actual field. In- 
stead, we may regard the field represented by (41) and (42) as an independent 
model of the magnetosphere, expressed by means of Euler potentials and con- 
taining two adjustable parameters. The properties of this model - comparison 
to observations, motion of trapped charged particles, etc. - will be explored 
in a separate article. 

W e  now investigate a little further the meaning of equation (41). If is 
zero, this solution for a - which will be denoted by ac, the subscript standing 
for "compressed dipole" - is not merely correct to the first order but holds 
exactly, being the well-known solution for  a dipole aligned with an external 
homogeneous field (Figure 4). In that case the points at which a = 0 trace the 
z-axis and also cover the sphere 

r = a (2/G,) 0 1/3 
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Figure 4-Lines of constant a (which are also f ield lines) in the 
meridional plane of a compressed dipole. Letter N indicates 
neutral points. 

which separates field lines attached to the dipole from those reaching to  infinity. 
There exist two neutral points where the z-axis meets the sphere, at which the 
field's intensity vanishes and its direction is therefore not uniquely defined. 

When the first-order contribution of is added to this configuration, the 
surface of demarcation opens up on one side (the night side), permitting some 
of the lines originating in the dipole to extend to  infinity. The neutral points 



shift towards the opposite side and the value of a corresponding to them and to 
the demarcation surface now differs from zero, so that the field lines connecting 
them to the dipole a re  shifted to the front side of the polar field line. The pro- 
perties of the surface of demarcation thus resemble those believed to exist for 
the magnetosphere, the surface observed to separate field lines originating at 
the earth from those originating in the solar wind or in its interaction with the 
geomagnetic field. 

In principle one could perform the preceding perturbation expansion with the 
joint contribution ac of gr and as the zero-order potential. In practice, this 
is not feasible, because the inversion 

r = r (ac, 8) 

which has to be substituted in the expression for a al/ 38 prior to integration can- 
not be readily derived. In addition, the denominator a y, / 28 of such an expres- 
sion would be too complicated to permit integration in closed form. 
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